
www.beenius.tv

Martin Sonc

Search movies, TV, and more 19:05 PM

WHITE PAPER

TABLE OF CONTENTS

4

9

11

17

14

20

4

9

11

17

14

20

6

10

12

19

15

22

8

8

WHO? ...

WHAT? ...

WHEN? ...

WHY? ...

WHERE?

HOW? ...

TV Operators
STB Manufacturers
Application Developers
Google ...

UX Experience
Google Assistant

History Lesson
Beenius Meets Android TV

Platform ..
Ecosystem ..

Living Room ..
Content Provider

Tools and Best Practices
Analytics ...

INTRODUCTION

Congratulations on your decision to update your knowledge.

Feel free to e-mail us your feedback: marketing@beenius.tv

Enjoy reading our white paper ‘’Android TV’’, written by our amazing
colleague Martin Sonc – Android Developer.

4

THE WHO?
TV Operators
It all starts and ends with the operator, which
also makes it a partner that must answer
some difficult questions, mostly stemming
from the way the users viewing habits are,
slowly but certainly, evolving. Taking that
into account there are multiple ways for the
operators to approach AndroidTV, and it all
starts with a launcher. Beenius Launcher.

A launcher in Android world is just another word for the home screen which
is mandatory for phones, tablets, TVs, STBs and everything in between.
Under the hood though, it is just another application and the operators can
decide to modify, augment or even replace it. In the best-case scenario, one
solution could (and should!) cover all of the cases below, which is exactly
how we approached the development of the Beenius Launcher:

Nowadays AndroidTV comes preinstalled on a wide range of TVs and
TV dongles, enabling a great living room experience without an STB and
providing an amazing opportunity for the TV operator to lower their cost
since there’s no need to deal with hardware, the operator simply provides
an application to their users. Beenius Launcher takes advantage of multiple
customization options the platform provides, such as exposing the data
to the Google Assistant, allowing for voice control, providing curated and

Non-modified AndroidTV with a custom application

5

personalized recommendation rows the user can add to their home screen
and even integrate with third-party applications through deals with TV
networks such as HBO, Netflix, FOX, and others.

In this scenario, the default AndroidTV launcher would be replaced by the
Beenius Launcher and distributed as a part of the firmware, which in term
means it has to be certified by Google (or one of their certification partners)
and must follow their user experience guidelines. Beenius Launcher gives
the operator complete control over the box, including potentially limiting
access to external applications. One of the important parts of the user
experience is onboarding or provisioning, which can actually be performed
as an additional step during the device setup. It allows for more freedom
but comes with additional cost, particularly in terms of certification and
maintenance.

In case the operator wants or needs to deploy an
STB to their users it can decide to do so without
having to create their own launcher. The default
implementation, provided by Google, allows
for multiple types of customization while still
providing a great and open user experience.
With Beenius Launcher, the operator can
augment the launcher by replacing certain
icons, modify the color scheme, pre-populate
the home screen with rows of content and even
prevent the user from removing some of them,
while still accommodating all the functionality
referenced.

19:05 PM

AndroidTV with a branded
launcher and a custom application

Custom build of AndroidTV with a custom launcher

6

STB Manufacturers

If the operator opts to deploy their own
hardware, partnering with the right
STB manufacturer is crucial, especially
since AndroidTV requires a long-term
commitment to provide mandatory
updates during the first couple of years
of the operation. The list of responsibilities is by no means exhaustive but
should at least provide a rough overview and explain the decisions required
to make the deployment a success.

Beenius as a media system integrator, together with our trusted STB
providers, has over a decade of experience in consulting and guiding
operators throughout the whole process of choosing the most suitable
hardware.

It might sound trivial, but it really (really!) is not. With the
average life span of an STB being around six years, any
decision made at this point can come and haunt you
for years to come. Google requires any AndroidTV STB
partnership to be backed by a long-term agreement,
providing a minimum of two years of security patches
and operating system updates. It is hard to predict what
requirements future media formats are going to bring,
making it hard to find a good compromise between
hardware specifications and cost.

STB & Remote

7

The manufacturer oversees the firmware
so, since the launcher application is
baked into it, that makes them the main
distributor of it. But the launcher is not
the only modification that can be done
on the STB, by far. The TV still is the
centerpiece of the living room, making
it an ideal candidate for it becoming an
IoT hub or a gaming station without the
console with the rise of platforms like
Stadia and could even be an entry point
to the world of VR.

Even though the certification can be a
cumbersome and time-consuming process
we prefer to look at it as more of a blessing
than a curse. It is basically a long array of
tests Google and its partners perform on the
hardware and software side to make sure the
operating system works as expected, meaning
the app developers don’t have to deal with
certain deviations in the implementation as it
tends to happen in AOSP projects where there
is no oversight. It can also simplify and speed
up certain third-party certifications, such as
the ones required by Netflix or Amazon Prime
Video.

Customization

Certification

8

Application Developers

Google

From an application developer
standpoint following the guidelines
and dealing with the certification
processes can feel a bit overwhelming.
As mentioned before, the certification
process offers a lot more stability
and predictability throughout the
development process while the issues
can be mitigated through careful
planning and, obviously, by picking
the right partners for the job. Due to
the extensive knowledge of the Android platform, and the particularities of
AndroidTV, Beenius is a proven and competent partner in the application
development and certification process.

Last but not least, Google is a partner that you do not get to choose and acts
as a certification authority - a gatekeeper between the user and mediocre
hardware and software. When starting a project a technical account manager
(also known as a TAM) gets assigned to it, a single point of contact that
should be able to provide guidance and mentoring throughout the process.

9

THE WHAT?
At this point, the playing field is set, the roster is selected, and the playing
positions are allocated, so it is time to look at what exactly AndroidTV
actually is.

In the broadest sense, it’s just a fork of Android with some slight
modifications to support specific broadcasting functionalities. But, it’s
much more than that and should not be treated just as a simple operating
system but an ecosystem consisting of an operating system, development
libraries, guides and documentation, Google Play Services and, most
importantly, it comes with the Google Play Store and its constellation of
different applications. Plus, it acts as a Chromecast device!

As mentioned before, with the Beenius
Launcher, the operator can decide
to customize the user experience on
the device in accordance with the
guidelines provided by the AndroidTV
team. So let’s look at the design
language Google is promoting as their
signature “10-foot experience”.

User Experience

The primary screen is made from horizontal rows of content called
channels, containing anything from applications or video content. The
installed applications prepare the content, include one row to the home
screen by default and expose even more to the users, that then decide if

10

they want to add more to the home screen. The rows can easily be added,
rearranged or removed and the content should, as a rule, be only a click away.

Channels support all sorts of functionality, including previews, rich metadata,
custom icons and much more, and is a great way for the app developers to
show off the content and lure the users into their application.

The navigation is done primarily with the directional pad on the remote or
by voice commands (a Bluetooth remote with a microphone is actually a
requirement). One of the major issues of the platform is text input, using the
on-screen keyboard is an absolute nightmare, so the app developers should
do whatever it takes to avoid it and use voice for search and a mobile device
for user authentication.

How do you search for “Monty Python’s Flying Circus” when the keyboard
is borderline useless? Well, just talk to your remote! The Google Assistant
integration on AndroidTV is amazing (provided the remote control was
properly designed) and allows two tiers of integration, both supported by
Beenius’ middleware and the Beenius Launcher.

The simplest option is on-device search, where the application exposes
data in a predefined format for the Google Assistant to search through. The
documentation is great, and the implementation is really straight forward.
It works but can be a bit limiting when trying to add some advanced
functionality, such as register additional keywords.

Fortunately, Google saw this problem coming and is now offering a special
integration path for such advanced use cases, called cloud-to-cloud
integration. In this scenario, the entire VOD library is exposed to Google
through an integration API, which allows for a way better user experience,
advanced (contextual) actions and even custom routines, such as “remove
all recorded content”.

Google Assistant

11

WHEN?
History Lesson
Using the Android operating system as a foundation for a new and improved
TV experience is definitely not a new idea and has a quite interesting history,
so it makes sense to look back before kickstarting our journey into the future.

Google TV, Google’s first foray into the TV business, was initially
released in 2010 with hardware provided by Sony and Logitech
and received a lukewarm reception on both the business and the
consumer side.

It is honestly hard to disagree with that review, the only functionality
that seemed to be worked out was the search, and even that was
half baked. The entire platform ended up being more or less just
a convenient way to launch the browser with Flash support. The
damn thing shipped with a wireless mouse and keyboard!

 Google TV feels like an incomplete jumble of good ideas
only half-realized, an unoptimized box of possibility that suffers
under the weight of its own ambition.

12

Unsurprisingly, the platform wasn’t doing well, and it soon started
to look like that was one of those products Google uses to test the
market and was soon to be replaced with Android TV.

Meanwhile, looking at the mess that was Google TV, Beenius
already started working on bringing Android to the STBs. Working
closely with the hardware manufacturers and content providers we
demonstrated the first build in 2012. After the initial demo we spent
years addressing the security and stability issues and officially
released our platform in 2013. In 2015 we released the brand-new
client applications and released a first Android DVB Hybrid solution
in 2017.

It seems like Google soon realized Google TV in its entirety wasn’t
going to work and decided to scrap the project and replace it with
a much more polished Android TV, announced at the Google IO
conference in 2014. The users finally got the platform they expected,
a polished interface backed by the Android ecosystem, including
Google Play Store, improved search integration, Chromecast
functionality. One of the interesting decisions was to integrate
Google Play Games from the beginning, enabling the users to use
the device as a gaming platform.

Open Platform
 Solution

13

Beenius meets
Android TV

Being ahead of the curve is always a blessing and a curse. So even though
Beenius spent years convincing operators, content providers, and clients
that Android is the way to go the path to where we are now was a long and
interesting journey, worthy of a standalone article.

Not to go into too many details, we soon had plenty of clients and Android
AOSP STBs deployed all around the world (25 countries and counting!), all
while keeping a close eye on the Android TV project. When the platform
seemed mature enough we were ready to go - the engineers were there
(Android is in our DNA anyway), we have extensive knowledge of the
underlying system so building an AndroidTV experience is a natural step
forward.

14

WHERE?

Living Room

There is plenty of areas where Android TV can make a huge impact,
augmenting and improving the customer experience while alleviating many
of the pain points operators have to tackle.

As mentioned before, the
TV is still a centerpiece of
any modern living room -
otherwise, where would you
point all the furniture? And,
while everything around us
was getting smarter and
more and more powerful, the TV still seems like the most underutilized
piece of hardware everyone has and loves. It seems bizarre that with the
huge leaps forward in the user experience on literally every other platform
the screen we seem to use and enjoy the most was lagging behind.

Understandably though, with huge deployments and tough technical
challenges of getting the video to the user, everchanging standards and
exponential growth in video fidelity, the focus was primarily on the technical
aspect. What good is a great user experience if the video is broken? Same
as on the web or in the mobile application development, the scope started
expanding and we finally are in a position where we can put the user front
and center, we now know what they want and have years of user data and
analytics to guide our path forward. We learned that the best interface

15

Content Provider

Fragmentation is a bad thing. It seems like Google
recognized that early on, so Android TV offers quite
a few mechanisms to help with the distribution and
management of the applications while improving
the reliability of the platform, with some great
improvements scheduled for the near future. There
are plenty of tools that can come handy, especially
when distributing the applications, which is what we will focus on in this section.

The Google Play Store offers a great set of tools for getting the right application
to the right consumer reliably and in a timely manner, from the testing phase
onwards, even for the Operator Tier launcher implementations. One of the
major drawbacks, however, is that the user needs to have a Google account
associated with the device - though, there are some great improvements in the
works, which will allow certain updates to circumvent that limitation.

is no interface, so we’re bringing search to the foreground, improving the
discoverability with an advanced recommendation engine and focusing
hard on reducing the cost through targeted advertising. We are putting
a lot of effort into user research through in-person sessions, extensive
analytics, and A/B testing.

16

One of the first issues the operators are facing when preparing for deployment
is testing, and fortunately, there are some great options available out of the
box, the most important being support for pre-release testing. There are three
release tracks available:

Each offers two enrollment options, a public one where the users can sign up
by visiting a dedicated website and closed testing, where the operator manually
adds the friendly users that will be testing the application. We employ a highly
automated continuous integration system that handles publishing on different
tracks automatically, with no developer intervention.

Alpha Track

Should contain the most bleeding-edge builds of the application. At Beenius we
recommend the clients to publish to the alpha track on the weekly, if not daily
basis. While the application should work, there are no guarantees it will work
reliably and the track should only be used to distribute it to internal testers. It’s
also a great place for the final users that are technically savvy enough to have
a sneak peek of what’s to come.

Beta Track

The applications should only be promoted to the beta track when the majority
of bugs have been resolved, and the application is close to being complete.
It’s a great way to show off the application to a limited set of users and collect
feedback. There are no better testers than the final users!

Release Track

Contains the public release, where the application is delivered to all the users.

17

WHY?

Platform

We understand that transitioning to an entirely new system can seem like
a risky move, especially if talking about an existing deployment, where
introducing a new platform can drastically increase the complexity of the
entire system. We do however firmly believe making such a transition is
worth the effort, especially, but not exclusively, because of the reasons
outlined in this section.

Android is an open-source Linux based operating system that is deployed
worldwide and used by more than 2.5 billion users. And, it used to be
a complete mess, plagued with fragmentation, performance and security
issues. Fortunately, it seems like those times are over, especially when taking
a closer look at a few of the recent initiatives, such as project treble, where the
vendor implementation became separate from the operating system. They
achieved that by improving and formalizing the HAL (hardware abstraction
layer), an interface that connects the software and the operating system
with the drivers and other vendor-specific code. What that means is that an
OS update does not require a re-work or even an update on the firmware
side.

18

Even with project treble, the upgrade cycle for Android OS is still way too
long and developers need to make sure the applications can support older
versions of Android while still following the latest trends and implement
features only available in new releases. To help solve that issue the Android
team maintains a set of Support Libraries that provide support for newer
features on earlier versions of Android or gracefully fall back to equivalent
functionality.

Other important changes in Android development is the
introduction of a new programming language called
Kotlin, a bigger focus on the software architecture
and regular improvements of the IDE and the included
debugging and profiling tools.

In order to provide an application that offers a great reliable viewing
experience, we need to ensure both the operating system and the
application is as reliable as possible. We’ll talk more about how to achieve
and measure that on the application side, but it’s worth mentioning a
very important thing right at the beginning: Android is, as said before,
a mature platform which means there’s already quite a few really good
developers with years of experience at your disposal. From personal
experience, developing for the TV or mobile devices is not that much
different, so “up-skilling” to a TV developer should come naturally to most
experienced Android developers. You might say that doesn’t directly
impact the reliability and speed aspect, but I beg to differ - programming
is more than just producing quality code, but also about being able to
use the tools, and there’s plenty of them at our disposal. Being able to
constantly keep an eye on the performance, measure network traffic and
identify memory leaks as seamlessly and simply as we do in Android
world is something that’d be hard to find in any other TV application
development framework.

Reliability and Speed

19

Since Android and Android TV follow the same UI (User Interface) and
UX (User Experience) principles, the Android users should, as long as
your application follows those same guidelines (which it absolutely
should!), have no problem with onboarding and navigating the shiny new
app. In Beenius we decided to follow the general design language of the
default Android TV launcher and the Material Design guidelines while
working hard to identify the places where we can improve the interface
without sacrificing the familiarity. We want the user to be able to feel at
home the moment they launch the application for the very first time!

As mentioned a couple of times
before, Android TV doesn’t only
borrow the underlying code from
the Android OS but also adopts and
embraces the entire ecosystem
of applications, with all the large
players having native Android TV
applications on the Google Play Store. And, we at Beenius decided to play
nice and make sure the users can access and install any of the applications
available on the market. People are going to watch YouTube and Netflix if
we want it or not - we might as well enable them to do so through our own
application where we can, with the aid of our great recommendation engine,
offer the content users can enjoy as a part of their TV package or as a one time
purchase through our VOD library and purchasing system.

Familiarity

Ecosystem

20

HOW?

Tools and Best Practices

A layer controlling a part of the user interface (usually a Fragment).
Doesn’t contain any logic or much functionality at all, but should act
as a glue between the view described in the XML and the content and
behavioral changes requested by the View Model.

Goals, ideas, and principles are a great thing to have, but in the end it’s
all about the execution. How do we create a TV experience that’s reliable,
pleasant to use easy to maintain?

We like to pride ourselves with following the latest standards in the
application development world, including the usage of clean architecture
supported by the MVVM model and packaged using application modules.

It’s only recently the architecture debate came into the forefront in Android
development, but the basic principles have been the same and well
understood for ages. What we’re basically saying is that before the code
can be reliable and testable it needs to be well organized. The MVVM model
breaks down the structure of the application (or in our case a module) into
a couple of distinct layers:

Application Development

Clean Architecture and the MVVM model

View

21

Should contain all the logic required to support the behavior and data
exposed through a View. It not only exposes the data and makes sure it’s
properly preserved through state changes, but it also reacts to the user
and system interactions.

In charge of retrieving and sending data and contains most of the
complex logic responsible for presenting the data to the user, as well as
handling and responding to user interaction.

We have further decided to split the application into distinct modules,
allowing for greater flexibility and empowering some next-generation
customization options. Each module can be independently developed and
tested, dynamically enabled or disabled and in certain cases even replaced
remotely using the Dynamic Feature Module functionality.

The underlying layers are in our case provided as a separate library (or, as
we like to call it, an SDK), that handles all the authentication, data sending &
retrieval, provides an off-line cache, basically acts as a foundation on which
the new generation of Android-based Beenius applications are built.

Application modules

View Model

Model

22

We try to encourage our clients to allow us to collect anonymized user
statistics and collect the error data remotely, with no user interaction needed,
meaning the first error reports should reach our developers directly and can
provide a great mechanism for quickly resolving a great majority of issues
the clients are experiencing.

Remote Error Collecting

The best way to build
great software is to
listen to the users.
Instead of bloating
the application with
all the imaginable
functionality we prefer
gradual increments and tweaks based on the actual usage of the application,
which can differ from market to market and can be deployed as such thanks
to the architectural approaches outlined in the previous sections. When
considering a larger change in the functionality or even a new module we can
roll out the functionality gradually, to a limited subset of users and collect the
feedback before releasing to the entire user base. Making decisions like that
is only possible if based on real measurements, which in term makes getting
the analytics right one of the greatest and the most important challenges in
modern application development. By using a combination of in-house tools
and Firebase integration on multiple levels we think we have found a sweet
spot in the analytics gathering and processing.

Analytics

